手机浏览器扫描二维码访问
无疑,正五边形是具有一定的对称性的。但是,相对于正方形,还是存在一定的对称性破缺。可以说正方形具有的性质,正五边形并不一定具有。但是,它还是有自己独特的性质的。
正五边形的一边的两条高线是一样长的。相邻两角的同是倾倒的相交高线互相平分。由于高线,导致每个内角都剩下一个相同的小角,那么两条高线靠近边的两条线段与边围成的三角形就是等腰三角形。根据相似三角形定理可得出结论。
在正五边形ABCDE中,高线AH交DE于H点,高线EF交AB于F点。EF和AH交于点I。根据上述结论,有EI=FI。由于高线,角ABG=角AEF而且AB=AE,角BAG=角EAF。所以,三角形AEF相似于三角形ABG。可得AG=AF。所以,EG=BF。根据三角形全等可得GJ=FJ,J为BG和EF交点。三边相等即可全等角GAJ=角FAJ,角AGJ=角AFJ。由于高线和正五边形,角AFJ=54度。因此,AJ=JF。
在正五边形中画个圆,不出五边形外。那么,最大的就是内接圆。内接圆与正五边形的五条边都相切,理论上就是圆的面积的极限。
分别以正五边形中点为圆心,半边长为半径画五个圆,那么五个圆必定两两相交。
对了,今天有位特别来宾。他就是尼基塔。尼基塔是美国华裔数学家,她在几何方面有非常深入的研究。提出了四等分点和五等分点,几何排列。她曾说,几何最重要的不是作图,而是代数。如果几何问题不可以变换成代数问题,那么解决起来一定会很困难。她在美国用中文出版了?内接圆几何基础教程?,好评如潮。同时,她也喜欢研究五边形。我刚才说的结论就全部出自她的手笔。虽然是照猫画虎,但是还是有点她的影子。昨天,我把自己的讲话稿拿给她看。她看后,赞不绝口。今天,她打算来到这里鼓励我们继续努力。那么,让我们欢迎她的到来。
尼基塔缓缓走出来,朝着两人挥手。然后,就说:晴空万里,高天无云。做一神仙,悠游天地。
我今天要来讲讲例证法。在这方面,李永乐老师就讲过。说实话,我是完完全全看完那个视频的。例证法看起来不严谨,总让人觉得有些缺乏说服力。但是,我看了他的视频觉得例证法还是有可取之处的。有时,我会作出一些推断。然后,找例子。他提到了恒等式,我想是有思想基础的。我在提出一些关于质数的结论时,总会发现问题。虽然大多数情况例证法不能证明,但是可以证伪的。我们知道证明和证伪只能有一个,所以证明和证伪就是反等价的。在证明(x+1)(x-1)=x2-1,我就觉得很好。
其实,今天不光有我来,还有其他人。你们猜她们是谁?
随着尼基塔话音落下,杜埃尼亚斯和玛格丽塔都回来了。四人寒暄叙旧,时间就慢慢过去了。
大明:我重生成了朱允炆  墨北枭苏小鱼  这个主角明明很强却异常谨慎  王牌团宠:小娇妻又被扒马甲了  贞观憨婿  谢瑶楚寒  掌上倾华  傲娇王爷宠不停魏紫风澹渊  最强小前锋  魏紫风澹渊  魔兽之亡灵召唤  桃源小巫医  山里来的小帅医  开局中奖一亿,我成了资本大佬  逆袭天师  皇神纪  魔王大人竟是我林立  苏辰唐依晨  武炼虚空  我在异界当兽医  
一睁眼回到六零年,上一世是孤儿的明暖这一世拥有了父母家人,在成长的过程中,还有一个他,青梅竹马,咋这么腹黑呢!...
作为醉月楼唯一一个男人,杨辰觉得压力很大。通过我洗的衣服来判断,李姐姐胖了两斤,王姐姐瘦了点,还有,能不能别让马姐姐穿那么性感的衣服,我洗衣服压力很大的。杨辰需要每天像老鸨这样汇报着工作。除此之外,他还要严守自己的贞操。杨辰,今天晚上来侍寝!让姐姐亲一个!记住,别躲,今晚,你是我的。...
下载客户端,查看完整作品简介。...
本书又名你是我戒不掉的甜秦南御第一次遇见纪微甜,丢了重要信息。秦南御第二次遇见纪微甜,丢了相亲对象。秦南御第三次遇见纪微甜,丢了人如果有人问他,最厌恶的异性类型是什么样的,他会毫不犹...
这是一条成魔之道ltBRgt杨小天既然走上了这样的一条道路ltBRgt就决不回头ltBRgt不论前途怎么样ltBRgt都要面对它ltBRgt他一定要成为至尊ltBRgt武林的至尊ltBRgt江湖的至尊天下的至尊ltBRgt成王败寇ltBRgt成功了ltBRgt他就是名传千古的霸主失败了他就是遗臭万年的恶魔...
人无耻则无畏,人至贱则无敌!谁说盖世枭雄必需得霸气十足?谁说无耻贱圣踏不得七彩祥云?谁说此般少年不能争天命,演修罗,替天行道?(QQ书友群313310371)...